Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.12.07.519404

ABSTRACT

Host-based antivirals could offer broad-spectrum therapeutics and prophylactics against the constantly-mutating viruses including the currently-ravaging coronavirus, yet must target cellular vulnerabilities of viruses without grossly endangering the host. Here we show that the master lipid regulator SREBP1 couples the phospholipid scramblase TMEM41B to constitute a host “metabolism-to-manufacture” cascade that maximizes membrane supplies to support coronaviral genome replication, harboring biosynthetic enzymes including Lipin1 as druggable viral-specific-essential (VSE) host genes. Moreover, pharmacological inhibition of Lipin1, by a moonlight function of the widely-prescribed beta-blocker Propranolol, metabolically uncouples the SREBP1-TMEM41B cascade and consequently exhibits broad-spectrum antiviral effects against coronaviruses, Zika virus, and Dengue virus. The data implicate a metabolism-based antiviral strategy that is well tolerated by the host, and a potential broad-spectrum medication against current and future coronavirus diseases.


Subject(s)
Coronavirus Infections
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.03.29.014209

ABSTRACT

Bats are responsible for the zoonotic transmission of several major viral diseases including the 2003 SARS outbreak and the ongoing COVID-19 pandemic. While bat genomic sequencing studies have revealed characteristic adaptations of the innate immune system, functional genomic studies are urgently needed to provide a foundation for the molecular dissection of the tolerance of viral infections in bats. Here we report the establishment and screening of genome-wide RNAi library and CRISPR library for the model megabat, Pteropus Alecto. We used the complementary RNAi and CRISPR libraries to interrogate Pteropus Alecto cells for infection with two different viruses, mumps virus and Influenza A virus, respectively. Screening results converged on the endocytosis pathway and the protein secretory pathway as required for both viral infections. Additionally, we revealed a general dependence of the C-1-tetrahydrofolate synthase gene, MTHFD1, for viral replication in bat cells as well as in human cells. MTHFD1 inhibitor carolacton potently blocked replication of several RNA viruses including SARS-CoV-2. Our studies provide a resource for systematic inquiry into the genetic underpinnings of bat biology and a potential target for developing broad spectrum antiviral therapy.


Subject(s)
COVID-19 , Virus Diseases
SELECTION OF CITATIONS
SEARCH DETAIL